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Abstract: Formalism is created describing the dynamics of 

mechatronic systems with incomplete differential programs of 

motion. The motions of such systems are featured as a motion 

of its constrained Affix in RS-space. The theorem of structure 

of r-derivative of the Affix constraint force is proved. On its 

basis the Affix motion equations and series of their covariant 

forms are derived. The Extension of Maxwell – LaGrange the-

ory for electromechanical systems with arbitrary incomplete 

differential programs of motion is made. Examples are given.  
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1   Introduction 

Mechatronic's development leads to necessity of elabora-

tion of adequate mechanical models of motion of systems 

with incomplete differential programs of motion [1]. It is 

known, than the large class of system’s motions, con-

trolled on the program, can be described as a class of 

motions with arbitrary holonomic and nonholonomic 

constraints [1-13]. In the frames of a theory it can be 

determined as differential constraints with any orders, 

which set a program of motion. In mechatronics it is ac-

cepted to term bilateral constraints as controllable con-

straints, and constraints equations - representations of the 

programs of motions (program of motion) [1]. Program 

of motion is called complete if it determines law of a 

controlled object. Otherwise it is called incomplete. It is 

known that the problem of motion of systems with pro-

gram of motion is mainly decided in the classic mechan-

ics [1, 12]. If differential motion's programs of any or-

ders, the problem can be decided in the frames of classic 

mechanics spreaded on such system's motion. Results of 

our version of the Extension of mechanics are given, for 

instance in the articles [7-11]. 

In this manuscript the dynamic’s elements of mecha-

tronic system with incomplete differential programs of 

motion without taking into account control errors are 

presented. The programs describe so-called open-looped 

control systems [1,1 2]. 

Analytical covariant forms of motions equations of 

such systems were obtained on the base of an approach, 

connected with introduction of an Affix for constrained 

material system [7, 13-15]. The Affix moves in the E3N 

on the diversity of Rs, constrained by differential ties – 

programs of motion. The next analytical forms of mo-

tion’s equations are discussed: “in generalized forces” – 

RsQ, “Appell-like” – RsA, “LaGrange-like” – RsL, “La-

Grange-Maxwell-like” – RsL-M. All of these forms are 

united by the form of motion’s equation in “generalized 

force factors” – RQ
(r)

-form, introduced in the report. 

Let’s determine the systems, motion of which is con-

strained by tie’s equations, beginning from nonlinear in 

relation with acceleration as systems with incomplete 

differential programs of motion of top orders [7,13,15]. 

As examples of problems of such system’s motion the 

problems are adduced about: 

a) orbital or angular maneuver of space vehicles, for 

example, with guidance module by acceleration of 

center of mass or angular acceleration; 

b) "super weak" docking of space vehicles; 

c) dynamics of testing machines controlled by mod-

ule of acceleration or jerk; 

d) "super weak" motions of technological robots and 

manipulators transferring, for example, detonating 

load; 

e) dynamics of self-acting controllable nonstop drive 

units used, for example, in aviation and rocket sys-

tems. 

To realize programmable motion of the objects it is 

necessary to have a drive, which could make a program 

of motion. To develop such drive it is necessary to have 

both adequate models of motion of control objects and 

adequate automatic control algorithms. Let’s note, that 

the lack of the right equations of motion of 

nonholonomic high order systems at the present does 

certain principles and results of the report [16] to be 

wrong. Let’s mark also that the problem of algorithm’s 

synthesis for control by high order derivatives have been 

decided in main by the group of scientists of prof. 

Vostrikov A.S. and is discussed in [17] for example. 

 
2   Choice of problem 

It is known there are two sets of problem of investigation 

of motion controllable on the program historically. Ac-

cording with first of them material system under active 

control forces moves such mode that the equations of 

constraints are satisfied. In the case the main goal is re-

ceiving of a set of equation of motion which has not un-

known constraints reaction [13-15]. 

According with the second set of problem both sys-

tem’s motion and adding forces-reactions of constraints 
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together with control forces provide the motion in ac-

cording with constraints conditions [1,2,10-12,15]. In the 

case the problem is mixed dynamic problem. It is solved 

by mode of classic manuscript [18] in holonomic coordi-

nates on the base of LaGrange theory. When the most of 

problems of applied mechanics and machine theory are 

solving the method of solution of the problem gives real 

interest because of in its frames motion equations are 

developed and analyzed by convenient for engineers 

language of force factors, i.e. of forces and torques. In 

conjunction with it the method is considered in the report 

only. 

 
3   The basic theorem of theory of systems with 

nonholonomic constraints of any orders  

The Extension of Classic Mechanics for nonholonomic 

systems of any orders-systems with incomplete differen-

tial programs of motion – is strictly connected with the 

theorem of structure of an r-derivative of a Force Factor 

of Affix constraints [11], which determines both its 

“smoothing degree” and Affix motion equations of con-

sidering systems. 

The theorem:  

Let's describe the motion of constrained material system 

of the mass M as motion of its Affix in E3N - space on 

diversity sR [7-11]. It is limited by holonomic and 

nonholonomic constraints 
p . The equations of motion 

are defined by the theorem of structure of an r-derivative 

of an Affix constraint reaction : 

Let the motion of system is in correspondence with  
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and the closed set of equations of constrained motion of 

Affix in E3N  takes the form 
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Here identified vectors of the force factors of active 

forces are )( iFF , iii fF  , if  is i-component of 

active force. On a double index the summing is pro-

duced; q=1 for nonlinear, and q=2 for linear on 
)k(

ix  con-

straints; an external vector-function 
p

kkT . The 

LaGrange’s factors pp
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in the form adapted for numerical solution may be found 

as a result of solving of the set of equations. 
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Uncomplicated proof of the theorem is not given 

here. Analysis of expression (2) shows that for realiza-

tion of incomplete program of motion it is enough to 

determine function 
(r)

R with number of k. Naturally the 

control of incomplete program of motion may be not 

optimal. “Reference part of control” in the frames of the 

motion’s program is determined by form of function kT  

only. Let’s note that an introducing in the system the part 

of control according to function kT leads to different 

modes of system’s motion when forms of the function 

kT  are different. Also note that k-gradient control is 

according with so called “ideal” constraints (following 

Gartung-Dobronravov) [13]. 

 
4   Covariant forms of motion’s equations of the sys-

tems with differential constraints 

Obviously that equation (3) is really unsolvable if the 

system has even a few of particles. Within the framework 

of scientific traditions there is a problem on passage 

from a set of equations (3) to equivalent to her analytical 

covariant set of equations in generalized coordinates. 

Actually it means “a passage from a mechanics of parti-

cles (bodies) to a mechanics of motions of interacting 

partial subsystems, forming the system”[12]. A number 

of forms of motion’s equations are possible here. How-

ever forms RsQ, RsA, RsL and intended for electrome-

chanical and mechatronic systems RsL-M-form are more 

traditional. 

To infer analytical forms of motion’s equations the set of 

equation (3) was used. In the set k-gradient part is deter-

mined by the method of the LaGrange’s factors. Possibil-

ity of calculation of generalized inertia forces and other 

physical values by algorithms of calculation of those 

values for holonomic systems takes place only if that 

mode of solution in nonholonomic problem is used. Here 

nonholonomic motion is described in terms of holonomic 

motion: the vectors ΦF, can be submitted according to 

[7,15] as 

iΦ
 i

i
 i

iF
 i QM,Q eexΦeF  )(   

..

.           (4) 
 

Here:  F
 iQ is generalized force; 

Φ
iQ  is generalized iner-

tia force; i
e - Affix-coordinate vectors of mutual base in 

tangential to RS space E3N [7-9], 

...   ;g
.

jj
iji  xxeee 10                      (5) 

 

ijg  are contravariant components of the metrical tensor 

of the configurations space Rs, determined by expression 

for kinetic energy of the system [14]. 
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Let’s note that Φ
iQ  will be calculated by LaGrange’s, 

Nielsen’s, Appell’s and so on procedures [7, 13]: 
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T – kinetic energy of the system; S – Appell’s function 

[14]. 

Analytical forms of motion’s equations noted above 

are obtained from a system (3) as outcome it of scalar 

multiplication on vectors je  and series of simple math-

ematical transformations. They accept a following as-

pect: 
 

RsQ – form                        
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RsA – form 
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Here according [7-11] sK  is the universal dynamic 

measure of motion – the Kineta: 
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]s[K  is the kineta’s part, quadratically depending on 

(s)
jq . Let’s mark, that TK 1

 and SK 2 . For kineta is 

valid the theorem such as the theorem of Konig [8]: 
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Let's mark, that if F
j

)(
j( F ) QQ 0 , and at r=0 the motion's 

equations in the RsQ –form became customary equations 

of motion in generalized forces. The motion's equations 

in the “RsA”- form turn to the Appell’s equations [13-

15]. 

Let’s consider RsL-form of motion’s equations. The-

se are reduced as forms represented above and looks 

like: 






























.qkrthenkif,rthenkif

,,q,rp,r...,,j

)q,...q,t(Wfq

     Q Qf)(KΛ

)r(
jjppj

k

)r(
j

(r)
j(T)

(r)
j(F)

pj
kp)(r

)(r
j

    2    0    1  

21   1   221

0

12

1
1

  (12) 

 

Let’s term j  
r
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1  as the Euler – 

LaGrange operator of the order (r+1) [7]. 

Let’s note that if r=0 equation (12) becomes LaGrange 

equations. 

 
6   Equations of motion in generalized force factor 

Let’s introduce the generalized force factor of inertia as  
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Then motion’s equations in “generalized force fac-

tors” (RQ
(r)

-form equations) have compact integrated 

forms, received above: 
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The form of motion’s equations as well as RsQ-form 

accepts the introduction of Representation of Interacting 

Partial Motions and Interacting Bodies. These are sub-

scribed in details in our works [10, 12]. Because of it the 

question will not discussed here. 

 
7   Equations of motion of electromechanical systems 

with differential constraints 

The electromechanical analogy similar 1
st
 electrome-

chanical analogy of classic mechanics takes place in dy-

namics of systems with differential constraints as 

(1).There are both mechanical and electrical generalized 

coordinates here. It is based on the Extension of Max-

well’s postulate [11]. The postulate is formulated as: 

Motion’s equations of controlled electromechanical 

systems with incomplete differential programs (as (1)) of 

motions are formed in LaGrange’s - RsL or Appell’s - 

RsA forms. 

For such systems RsL-M-form of the equations are as 

follows: 
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Here L(r+1) and R(r+1) – LaGrange’s and Raleigh’s func-

tions. There are calculated as: 
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П(r) is the analog of member r of potential energy Π  

in such electromechanical systems for which the energy 

may be calculated as 
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Then the function П(r) and R(r+1) may be written in 

form 
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where Cij and rij are the quasi-elastic and dissipative co-

efficients of electromechanical system. 

If the potential energy of the system is represented in 

more general form, the equations of motion have Appell-

like form (RsA-form): 
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Equations (16) and (21) adequately describe the mo-

tion of electromechanical and mechatronic systems with 

arbitrary complete and incomplete differential programs 

of motion as (1). If in the equation (1) there are mechan-

ical or electrical 



...q,q jj
only then 

)r(
)(jQ   is obtained 

from the problem’s conditions. The example of the prob-

lem will be presented below. 

 
8   Examples 

Let’s complete motion’s equations of open – looped con-

trol model of testing unit with three degrees of freedom 

for dynamic tests of the equipment in terms of quasi-

velocities and quasi-accelerations. Motion of the unit 

goes in according with incomplete differential program. 

Let ε -gradient control exists. It is referenced by incom-

plete motion’s program: 
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Here ε  - angle acceleration of the unit with an object of 

testing. 

Dynamic motion’s equations are forming in RSA-form 
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The set of dynamic equations of program motion in mov-

ing axis looks like 
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It means that the set of equations is added for example 

by kinematical Euler’s equations. 

 Let’s make the set of equations of the plane model 

(z,φ) of electromechanical unit. Its schematic diagram is 

presented on the Figure 1. 
 

Figure1 

Here  

m-mass of system, ccx JJ  - moment of inertia of sys-

tem with respect to an axis x; 

c-stiffness of springs, b-damping coefficient of system; 

B-magnetic field inductance in the air gap; 

R-active resistance of the coil, L-inductance of the coil; 

n-a number of wiring of the coil, r-middle radius of the 

coil. 

Control voltages 21,UU feed the coils. Ampere’s forces 

D
A

B
A ,FF act as control forces. 

The next values we shell count as mechanical gener-

alized coordinates of the system: 

 a) displacement of point C from static equilibrium 
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CF

B
AF

C
bF

D
AF

E
CF

BB
BB

A
B

C D
E

gm

1K
2K



X

Y

Z

l DECDBCAB
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 b) angle  . Let the angle   will be restricted by 

little values. 

Changes in the coils K1 and K2 eqqq elel  21 ,  are 

accepted as electrical generalized coordinates of the sys-

tem. 


 eeq qIqI ,  

A motion control of the table of the testing unit is 

realized in according with incomplete differential pro-

grams of motion for example 

0202  o
mechmech SSKKf                   (26) 

 Let’s get a set of motion’s equations of electrome-

chanical system in the RsL-M-form: 
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







































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/

/

/

/

...

222
2
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2
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222
2

..

222
2

fd

Uef RLΛ

Uqf RLΛ

f RLΛ

    xf RLΛ

t

e)(
e

)(
)(

e

q)(
q

)(
)(

q

)()(
)(

)(
x

)(
)(

x

        (27) 

Here   Q
)(

j(T) 0
1

  

 Let’s note that Ampere’s forces are 
 

e
D
Aq

B
A rnBIFrnBIF  2,2                  (28) 

 

Therefore the control generalized force factors 
)(

j(λQ
1

)  are  
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,)(2)(/

),(2/

1
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1
)
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e
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1
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......
1

)













)(
e(λ

)(
q(λ

q
B
A

D
A

)(
(λ

eq
D
A

B
A

)(
x(λ

QQ

lIIrnBlFFfQ

IIrnBFFxfQ

 (29) 

 

Let’s express from (29) 
..

, eq II  and substitute it in (27). 

In result with it get the motion equations of electrome-

chanical unit in respect with  ,,,, eq UUx : 
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Jxxm

UrnlBJxmlRJxml
dt

d
L

UrnlBJxmlRJxml
dt

d
L

clJ

xcxmbxm

e

q     (29) 

 

The equations of program motion with incomplete 

program for a testing unit of 6-degrees of freedom – imi-

tator of machines moving [19] will be represented in our 

report. It doesn’t show here because of large volume. 

 

9   Conclusion 

Received and presented materials are our contribution in 

the created theory of mechatronic systems with incom-

plete arbitrary differential programs of motion. 
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